Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Infect Immun ; 91(5): e0013023, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37129527

RESUMO

Brucella abortus, the intracellular causative agent of brucellosis, relies on type IV secretion system (T4SS) effector-mediated modulation of host cell functions to establish a replicative niche, the Brucella-containing vacuole (BCV). Brucella exploits the host's endocytic, secretory, and autophagic pathways to modulate the nature and function of its vacuole from an endocytic BCV (eBCV) to an endoplasmic reticulum (ER)-derived replicative BCV (rBCV) to an autophagic egress BCV (aBCV). A role for the host ER-associated degradation pathway (ERAD) in the B. abortus intracellular cycle was recently uncovered, as it is enhanced by the T4SS effector BspL to control the timing of aBCV-mediated egress. Here, we show that the T4SS effector BspA also interferes with ERAD, yet to promote B. abortus intracellular proliferation. BspA was required for B. abortus replication in bone marrow-derived macrophages and interacts with membrane-associated RING-CH-type finger 6 (MARCH6), a host E3 ubiquitin ligase involved in ERAD. Pharmacological inhibition of ERAD and small interfering RNA (siRNA) depletion of MARCH6 did not affect the replication of wild-type B. abortus but rescued the replication defect of a bspA deletion mutant, while depletion of the ERAD component UbxD8 affected replication of B. abortus and rescued the replication defect of the bspA mutant. BspA affected the degradation of ERAD substrates and destabilized the MARCH6 E3 ligase complex. Taken together, these findings indicate that BspA inhibits the host ERAD pathway via targeting of MARCH6 to promote B. abortus intracellular growth. Our data reveal that targeting ERAD components by type IV effectors emerges as a multifaceted theme in Brucella pathogenesis.


Assuntos
Proteínas de Bactérias , Brucella abortus , Brucelose , Proteínas de Membrana , Sistemas de Secreção Tipo IV , Animais , Camundongos , Brucella abortus/fisiologia , Sistemas de Secreção Tipo IV/metabolismo , Brucelose/microbiologia , Camundongos Endogâmicos C57BL , Macrófagos/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Degradação Associada com o Retículo Endoplasmático , Ubiquitina-Proteína Ligases/metabolismo , Retículo Endoplasmático/microbiologia
2.
J Microbiol Biotechnol ; 33(4): 441-448, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859519

RESUMO

Brucellosis is a contagious zoonotic disease that infects millions of people annually with hundreds of millions more being exposed. It is caused by Brucella, a highly infectious bacterial species capable of infecting humans with an estimated dose of 10-100 organisms. Sirtuin 1 (SIRT1) has been reported to contribute to prevention of viral diseases as well as a chronic infection caused by Mycobacterium bovis. Here, we investigated the role of SIRT1 in the establishment of Brucella abortus infection in both in vitro and in vivo systems using the reported SIRT1 activators resveratrol (RES), piceatannol (PIC), and ginsenoside Rg3 (Rg3). In RAW264.7 cells, SIRT1 activators did not alter the adherence of Brucella or Salmonella Typhimurium. However, reduced uptake of Brucella was observed in cells treated with PIC and Rg3, and survival of Brucella within the cells was only observed to decrease in cells that were treated with Rg3, while PIC treatment reduced the intracellular survival of Salmonella. SIRT1 treatment in mice via oral route resulted in augmented Brucella resistance for PIC and Rg3, but not RES. PIC treatment favors Th2 immune response despite reduced serum proinflammatory cytokine production, while Rg3-treated mice displayed high IL-12 and IFN-γ serum production. Overall, our findings encourage further investigation into the complete mechanisms of action of the different SIRT1 activators used as well as their potential benefit as an effective alternative approach against intracellular and extracellular pathogens.


Assuntos
Brucella abortus , Brucelose , Humanos , Animais , Camundongos , Brucella abortus/fisiologia , Sirtuína 1/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Brucelose/tratamento farmacológico , Brucelose/prevenção & controle , Macrófagos/metabolismo , Linhagem Celular
3.
Infect Immun ; 90(3): e0001322, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35100011

RESUMO

Research on Brucella pathogenesis has focused primarily on its ability to cause persistent intracellular infection of the mononuclear phagocyte system. At these sites, Brucella abortus evades innate immunity, which results in low-level inflammation and chronic infection of phagocytes. In contrast, the host response in the placenta during infection is characterized by severe inflammation and extensive extracellular replication of B. abortus. Despite the importance of reproductive disease caused by Brucella infection, our knowledge of the mechanisms involved in placental inflammation and abortion is limited. To understand the immune responses specifically driving placental pathology, we modeled placental B. abortus infection in pregnant mice. B. abortus infection caused an increase in the production of tumor necrosis factor alpha (TNF-α), specifically in the placenta. We found that placental expression levels of Tnfa and circulating TNF-α were dependent on the induction of endoplasmic reticulum stress and the B. abortus type IV secretion system (T4SS) effector protein VceC. Blockade of TNF-α reduced placental inflammation and improved fetal viability in mice. This work sheds light on a tissue-specific response of the placenta to B. abortus infection that may be important for bacterial transmission via abortion in the natural host species.


Assuntos
Brucelose Bovina , Brucelose , Animais , Brucella abortus/fisiologia , Brucelose/microbiologia , Bovinos , Feminino , Inflamação , Camundongos , Placenta , Gravidez , Fator de Necrose Tumoral alfa/metabolismo
4.
J Immunol Methods ; 500: 113172, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673003

RESUMO

A promising strategy for controlling animal brucellosis is vaccination with commercial vaccine strains (Brucella melitensis Rev.1 and Brucella abortus RB51). Owing to safety concerns associated with these vaccines, developing a more effective and safe vaccine is essential. In this study, we examined the capacity of BhuA, 7α-HSDH or FliC antigens in the presence or absence of adjuvant in eliciting immune responses against brucellosis. After cloning, expression and purification, these proteins were used to examine immunologic responses. All immunized mice induced a vigorous IgG, with a predominant IgG2a response. Moreover, splenocytes of immunized mice proliferated and produced IL-2 and IFN-γ, suggesting the induction of cellular immunity. The high IgG2a/IgG1 ratio and IL-2 and IFN-γ indicated a Th1-oriented immune response in test groups. BhuA-, 7α-HSDH- or FliC- poly I:C formulations were the most effective at inducing Th1 immune response compared to groups immunized with naked proteins. Immunization with proteins protected mice against B. melitensis 16M and B. abortus 544. The proteins in adjuvant induced higher levels of protection than proteins only and exhibited similar degree of protection to live attenuated vaccines. Our results, for first time, introduced five potential candidates for subunit vaccine development against B. melitensis and B. abortus infection.


Assuntos
Proteínas de Bactérias/imunologia , Vacina contra Brucelose/imunologia , Brucella abortus/fisiologia , Brucella melitensis/fisiologia , Brucelose Bovina/imunologia , Flagelina/imunologia , Hidroxiesteroide Desidrogenases/imunologia , Proteínas de Membrana Transportadoras/imunologia , Células Th1/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Bovinos , Modelos Animais de Doenças , Feminino , Imunidade Humoral , Imunoglobulina G/sangue , Interferon gama/metabolismo , Camundongos , Poli I-C/imunologia , Vacinas de Subunidades
5.
EMBO J ; 40(19): e107664, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423453

RESUMO

Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum-derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system-mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans-Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase-activating Protein (GAP) ACAP1 to dysregulate Arf6-/Rab8a-dependent transport within the recycling endosome, which resulted in accretion of TGN-associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.


Assuntos
Fator 6 de Ribosilação do ADP/metabolismo , Brucella abortus/fisiologia , Brucelose/metabolismo , Brucelose/microbiologia , Interações Hospedeiro-Patógeno , Vacúolos/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Brucelose/imunologia , Endossomos/metabolismo , Endossomos/microbiologia , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Sistemas de Secreção Tipo IV , Rede trans-Golgi
6.
Infect Immun ; 89(7): e0000421, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820813

RESUMO

Brucella abortus is a facultatively extracellular-intracellular pathogen that encounters a diversity of environments within the host cell. We report that bacteria extracted from infected cells at late stages (48 h postinfection) of the intracellular life cycle significantly increase their ability to multiply in new target cells. This increase depends on early interaction with the cell surface, since the bacteria become more adherent and penetrate more efficiently than in vitro-grown bacteria. At this late stage of infection, the bacterium locates within an autophagosome-like compartment, facing starvation and acidic conditions. At this point, the BvrR/BvrS two-component system becomes activated, and the expression of the transcriptional regulator VjbR and the type IV secretion system component VirB increases. Using bafilomycin to inhibit BvrR/BvrS activation and using specific inhibitors for VjbR and VirB, we showed that the BvrR/BvrS and VjbR systems correlate with increased interaction with new host cells, while the VirB system does not. Bacteria released from infected cells under natural conditions displayed the same phenotype as intracellular bacteria. We propose a model in which the B. abortus BvrR/BvrS system senses the transition from its replicative niche at the endoplasmic reticulum to the autophagosome-like exit compartment. This activation leads to the expression of VirB, which participates in the release of the bacterium from the cells, and an increase in VjbR expression that results in a more efficient interaction with new host cells.


Assuntos
Brucella abortus/fisiologia , Brucelose Bovina/microbiologia , Interações Hospedeiro-Patógeno , Animais , Autofagossomos , Aderência Bacteriana , Proteínas de Bactérias/genética , Brucelose Bovina/imunologia , Bovinos , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/microbiologia , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Virulência/genética
7.
Microbes Infect ; 23(4-5): 104809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33753207

RESUMO

The objective of this project was to conduct a feasibility study to determine whether the Brucella abortus S19 vaccine infects and persists in mice and determine whether S19 can be used as a challenge strain for vaccine trial studies. Groups of BALB/c mice were inoculated (intraperitoneally, subcutaneously, intranasally) and euthanized to determine colonization titers in the spleens and lungs. This study showed that S19 does infect and persist in the tissues of mice for 8 weeks and demonstrates that S19 can be used, safely and economically under BSL2 containment, as the challenge strain for future trials to evaluate vaccine efficacy.


Assuntos
Brucella abortus/classificação , Brucella abortus/fisiologia , Brucelose/microbiologia , Modelos Animais de Doenças , Animais , Brucelose/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Organismos Livres de Patógenos Específicos
8.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688053

RESUMO

Cattle are natural hosts of the intracellular pathogen Brucella abortus, which inflicts a significant burden on the health and reproduction of these important livestock. The primary routes of infection in field settings have been described, but it is not known how the bovine host shapes the structure of B. abortus populations during infection. We utilized a library of uniquely barcoded B. abortus strains to temporally and spatially quantify population structure during colonization of cattle through a natural route of infection. Introducing 108 bacteria from this barcoded library to the conjunctival mucosa resulted in expected levels of local lymph node colonization at a 1-wk time point. We leveraged variance in strain abundance in the library to demonstrate that only 1 in 10,000 brucellae introduced at the site of infection reached a parotid lymph node. Thus, cattle restrict the overwhelming majority of B. abortus introduced via the ocular conjunctiva at this dose. Individual strains were spatially restricted within the host tissue, and the total B. abortus census was dominated by a small number of distinct strains in each lymph node. These results define a bottleneck that B. abortus must traverse to colonize local lymph nodes from the conjunctival mucosa. The data further support a model in which a small number of spatially isolated granulomas founded by unique strains are present at 1 wk postinfection. These experiments demonstrate the power of barcoded transposon tools to quantify infection bottlenecks and to define pathogen population structure in host tissues.


Assuntos
Brucella abortus/fisiologia , Brucelose/veterinária , Doenças dos Bovinos/microbiologia , Animais , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Brucella abortus/patogenicidade , Brucelose/microbiologia , Bovinos , Feminino , Linfonodos/microbiologia , Virulência
9.
Transbound Emerg Dis ; 68(3): 1363-1376, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32810924

RESUMO

Brucellosis is an important occupational disease, mainly among veterinarians, because of their frequent contact with sick animals, contaminated secretions and live attenuated anti-Brucella vaccines. This study aimed to determine the prevalence of accidental exposure to S19 and RB51 vaccine strains and occupational brucellosis among veterinarians registered to administer vaccinations in Minas Gerais, Brazil, as well as to identify the risk factors associated with accidental exposure to anti-Brucella abortus vaccines. Data were collected through an online questionnaire. Three hundred and twenty-nine veterinarians were included in the analyses using stratified random sampling. A multivariate logistic regression analysis was used to evaluate the predictors of accidental exposure to S19 and RB51 strains. Nearly one third of the veterinarians registered to administer bovine brucellosis vaccination in Minas Gerais, 32.83% (108/329) (95% confidence interval [CI]: 27.78-38.19%), reported having been accidentally exposed to S19 or RB51 vaccine strains. The exposure factors associated with this outcome included a score of personnel protective equipment (PPE) use during work (odds ratio [OR], 0.94; 95% CI: 0.89-0.98) and a score of knowledge about brucellosis symptoms, classified as poor (base category), intermediate (OR, 0.26; 95% CI: 0.07-0.87) or good (OR, 0.22; 95% CI: 0.07-0.62). In addition, 4.56% (15/329) (95% CI: 2.57-7.41%) of veterinarians reported that they had brucellosis, of which 46.67% (7/15) considered that the disease was due to accidental exposure to anti-B. abortus live attenuated vaccine. The prevalence of accidental exposure to B. abortus vaccine strains among veterinarians from Minas Gerais enrolled in the control of bovine brucellosis was high. The reduced knowledge about human brucellosis symptoms and lack of appropriate PPE use were risk factors from unintentional contact with S19 and RB51 vaccine strains.


Assuntos
Vacina contra Brucelose/efeitos adversos , Brucella abortus/fisiologia , Brucelose/epidemiologia , Doenças Profissionais/epidemiologia , Médicos Veterinários/estatística & dados numéricos , Adulto , Brasil , Brucelose/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/microbiologia , Vacinas Atenuadas/efeitos adversos
10.
Front Endocrinol (Lausanne) ; 11: 585923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071987

RESUMO

Brucellosis is a prevalent global zoonotic infection but has far more impact in developing countries. The adipocytes are the most abundant cell type of adipose tissue and their secreted factors play an important role in several aspects of the innate and adaptive immune response. Here, we demonstrated the ability of Brucella abortus to infect and replicate in both adipocytes and its precursor cells (pre-adipocytes) derived from 3T3-L1 cell line. Additionally, infection of pre-adipocytes also inhibited adipogenesis in a mechanism independent of bacterial viability and dependent on lipidated outer membrane protein (L-Omp19). B. abortus infection was able to modulate the secretion of IL-6 and the matrix metalloproteases (MMPs) -2 and-9 in pre-adipocytes and adipocytes, and also modulated de transcription of adiponectin, leptin, and resistin in differentiated adipocytes. B. abortus-infected macrophages also modulate adipocyte differentiation involving a TNF-α dependent mechanism, thus suggesting a plausible interplay between B. abortus, adipocytes, and macrophages. In conclusion, B. abortus is able to alter adipogenesis process in adipocytes and its precursors directly after their infection, or merely their exposure to the B. abortus lipoproteins, and indirectly through soluble factors released by B. abortus-infected macrophages.


Assuntos
Adipócitos/citologia , Adipogenia , Brucelose/complicações , Diferenciação Celular , Inflamação/imunologia , Macrófagos/imunologia , Células 3T3-L1 , Adipócitos/imunologia , Adipócitos/metabolismo , Adipócitos/microbiologia , Animais , Brucella abortus/fisiologia , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Mediadores da Inflamação/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos
11.
Arch Razi Inst ; 75(3): 377-384, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33025778

RESUMO

Bovine brucellosis is a widespread zoonosis caused by Brucella abortus. The disease is prevalent nationwide in Iran and is on an increasing trend among humans and livestock. The eradication of brucellosis is challenging and requires control policies at both national and regional levels. Regarding this, the aim of the current study was to evaluate if Brucella is implicated in an abortion outbreak that occurred in a dairy cattle herd, in Shahre Rey, Tehran province, Iran, after vaccination with B. abortus Iriba vaccine. The research context was a dairy cattle farm with 2,000 animals located in Shahre Rey. This farm was Brucella-free based on the results of two serological tests performed one month before vaccination. After the incidence of the first case of abortion following vaccination, serodiagnosis revealed a seropositive reaction in 30 non-pregnant cows and 19 pregnant cows that aborted later. Bacteriology and molecular typing facilitated the identification of 16 isolates of B. abortus biovar 3 from the aborted animals. None of the isolates were confirmed as B. abortus Iribavaccine strain. The results confirmed that B. abortus biovar 3 was the most prevalent biovar in the cattle of Iran. The source and time of infection in the current study were not detected most likely due to the low biosecurity level in the farm (e.g., uncontrolled introduction of the agents via humans, infected animals, semen, and vectors). In endemic countries, the serodiagnosis of brucellosis alone is not sufficient and has to be accompanied by isolation and molecular diagnosis. In addition, it is important to evaluate the presence of B. abortus in bovine semen and vectors.


Assuntos
Aborto Animal/epidemiologia , Vacina contra Brucelose/administração & dosagem , Brucella abortus/fisiologia , Brucelose Bovina/epidemiologia , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Imunização/veterinária , Aborto Animal/microbiologia , Animais , Brucelose Bovina/prevenção & controle , Bovinos , Doenças dos Bovinos/prevenção & controle , Indústria de Laticínios , Surtos de Doenças/prevenção & controle , Incidência , Irã (Geográfico)/epidemiologia
12.
PLoS One ; 15(8): e0237371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845904

RESUMO

The neurotransmitter gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the human brain; however, it is becoming more evident that this non-proteinogenic amino acid plays multiple physiological roles in biology. In the present study, the transport and function of GABA is studied in the highly infectious intracellular bacterium Brucella abortus. The data show that 3H-GABA is imported by B. abortus under nutrient limiting conditions and that the small RNAs AbcR1 and AbcR2 negatively regulate this transport. A specific transport system, gts, is responsible for the transport of GABA as determined by measuring 3H-GABA transport in isogenic deletion strains of known AbcR1/2 regulatory targets; however, this locus is unnecessary for Brucella infection in BALB/c mice. Similar assays revealed that 3H-GABA transport is uninhibited by the 20 standard proteinogenic amino acids, representing preference for the transport of 3H-GABA. Metabolic studies did not show any potential metabolic utilization of GABA by B. abortus as a carbon or nitrogen source, and RNA sequencing analysis revealed limited transcriptional differences between B. abortus 2308 with or without exposure to GABA. While this study provides evidence for GABA transport by B. abortus, questions remain as to why and when this transport is utilized during Brucella pathogenesis.


Assuntos
Brucella abortus/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Brucella abortus/efeitos dos fármacos , Brucella abortus/fisiologia , Ácido Glutâmico/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
13.
Cell Microbiol ; 22(11): e13245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32657513

RESUMO

Adhesion to host cells is the first step in the virulence cycle of any pathogen. In Gram-negative bacteria, adhesion is mediated, among other virulence factors such as the lipopolysaccharides, by specific outer-membrane proteins generally termed adhesins that belong to a wide variety of families and have different evolutionary origins. In Brucella, a widespread zoonotic pathogen of animal and human health concern, adhesion is central as it may determine the intracellular fate of the bacterium, an essential stage in its pathogenesis. In the present paper, we further characterised a genomic locus that we have previously reported encodes an adhesin (BigA) with a bacterial immunoglobulin-like domain (BIg-like). We found that this region encodes a second adhesin, which we have named BigB; and PalA, a periplasmic protein necessary for the proper display in the outer membrane of BigA and BigB. Deletion of bigB or palA diminishes the adhesion of the bacterium and overexpression of BigB dramatically increases it. Incubation of cells with the recombinant BIg-like domain of BigB induced important cytoskeletal rearrangements and affected the focal adhesion sites indicating that the adhesin targets cell-cell or cell-matrix proteins. We additionally show that PalA has a periplasmic localisation and is completely necessary for the proper display of BigA and BigB, probably avoiding their aggregation and facilitating their transport to the outer membrane. Our results indicate that this genomic island is entirely devoted to the adhesion of Brucella to host cells.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/genética , Brucella abortus/patogenicidade , Ilhas Genômicas , Adesinas Bacterianas/genética , Animais , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/genética , Brucella abortus/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Periplasma/metabolismo , Virulência
14.
Folia Microbiol (Praha) ; 65(5): 879-894, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32462327

RESUMO

The evolutionary "success" of the genus Brucella depends on the ability to persist both in the environment as well as inside of even activated macrophages of the animal host. For that, the Brucellae produce catalase and superoxide dismutase to defend against oxidative stress. Since the deletion of the mglA gene in the B. abortus S19 vaccine strain resulted not only in an increased tolerance to H2O2 but also in the induction of cytokines in macrophages, we here investigated the effect of oxidative stress (Fe2+ and H2O2) on the survival of B. abortus S19 and the isogenic B. abortus S 19 ∆mglA 3.14 deletion mutant in comparison with B. neotomae 5K33, Brucella strain 83/13, and B. microti CCM4915. These Brucellae belong to different phylogenetic clades and show characteristic differences in the mgl-operon. From the various Brucellae tested, B. abortus S19 showed the highest susceptibility to oxidative stress and the lowest ability to survive inside of murine macrophages. B. abortus S19 ∆mglA 3.14 as well as B. neotomae, which also belongs to the classical core clade of Brucella and lacks the regulators of the mgl-operon, presented the highest degree of tolerance to H2O2 but not in the survival in macrophages. The latter was most pronounced in case of an infection with B. 83/13 and B. microti CCM4915. The various Brucellae investigated here demonstrate significant differences in tolerance against oxidative stress and different survival in murine macrophages, which, however, do not correlate directly.


Assuntos
Brucella abortus/fisiologia , Macrófagos/microbiologia , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Animais , Brucella/classificação , Brucella/fisiologia , Linhagem Celular , Contagem de Colônia Microbiana , Citocinas/metabolismo , Genes Bacterianos , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Macrófagos/imunologia , Camundongos , Viabilidade Microbiana , Mutação , Especificidade da Espécie
15.
Vet Microbiol ; 242: 108586, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122590

RESUMO

Brucella as a stealthy intracellular pathogen avoids activation of innate immune response. Here we investigated the contribution of an adenosine receptor, Adora2b, during Brucella infection in professional phagocyte RAW 264.7 cells and in a murine model. Adora2b-deficient cells showed attenuated Brucella internalization and intracellular survival with enhanced release of IL-6, TNF-α, IL-12 and MCP-1. In addition, blockade of Adora2b using MRS 1754 treatment in mice resulted in increased total weight of the spleens but suppressed bacterial burden in these organs accompanied by elevated levels of IL-6, IFN-γ, TNF-α, IL-12 and MCP-1, while reduced IL-10. Overall, we proposed that the Adora2b participates in the successful phagocytic pathway and intracellular survival of Brucella in RAW 264.7 cells, and could be a potential therapeutic target for the treatment of acute brucellosis in animals.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Brucelose/tratamento farmacológico , Imunidade Inata , Macrófagos/microbiologia , Receptor A2B de Adenosina/imunologia , Acetamidas/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Brucella abortus/efeitos dos fármacos , Brucella abortus/fisiologia , Brucelose/microbiologia , Citocinas/imunologia , Feminino , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Purinas/farmacologia , Células RAW 264.7 , Receptor A2B de Adenosina/genética , Transdução de Sinais
16.
J Microbiol Biotechnol ; 30(4): 482-489, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893609

RESUMO

We previously identified ß-sitosterol (BS) as one of the most abundant compounds found in Korean red ginseng oil. BS is a widely prevalent vegetable-derived phytosterol with many known health benefits. Here, we investigated the efficacy of BS against Brucella (B.) abortus infection. BS showed no effect on bacterial growth but attenuated internalization, intracellular survival and MAPKs-linked intracellular signaling in RAW264.7 cells. BS treatment in cells is also associated with increased nitrite concentration during infection at 24 h. Slightly enhanced resistance to B. abortus infection was observed in mice orally given BS, which could be mediated by induced production of proinflammatory cytokines. Taken together, our study demonstrates the contribution of BS treatment against B. abortus infection although further investigation is encouraged to maximize its beneficial effects against intracellular infection.


Assuntos
Brucella abortus/efeitos dos fármacos , Brucelose/prevenção & controle , Citocinas/sangue , Sitosteroides/administração & dosagem , Animais , Brucella abortus/fisiologia , Brucelose/imunologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Nitratos/metabolismo , Células RAW 264.7 , Sitosteroides/farmacologia
17.
J Immunol ; 204(3): 632-643, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31852753

RESUMO

Thioredoxin-interacting protein (TXNIP) is a multifunctional protein that functions in tumor suppression, oxidative stress, and inflammatory responses. However, how TXNIP functions during microbial infections is rarely reported. In this study, we demonstrate that Brucella infection decreased TXNIP expression to promote its intracellular growth in macrophages by decreasing the production of NO and reactive oxygen species (ROS). Following Brucella abortus infection, TXNIP knockout RAW264.7 cells produced significantly lower levels of NO and ROS, compared with wild-type RAW264.7 cells. Inducible NO synthase (iNOS) inhibitor treatment reduced NO levels, which resulted in a dose-dependent restoration of TXNIP expression, demonstrating that the expression of TXNIP is regulated by NO. In addition, the expression of iNOS and the production of NO were dependent on the type IV secretion system of Brucella Moreover, Brucella infection reduced TXNIP expression in bone marrow-derived macrophages and mouse lung and spleen. Knocked down of the TXNIP expression in bone marrow-derived macrophages increased intracellular survival of Brucella These findings revealed the following: 1) TXNIP is a novel molecule to promote Brucella intracellular survival by reducing the production of NO and ROS; 2) a negative feedback-regulation system of NO confers protection against iNOS-mediated antibacterial effects. The elucidation of this mechanism may reveal a novel host surveillance pathway for bacterial intracellular survival.


Assuntos
Brucella abortus/fisiologia , Brucelose/metabolismo , Proteínas de Transporte/metabolismo , Macrófagos/imunologia , Tiorredoxinas/metabolismo , Animais , Brucelose/microbiologia , Proteínas de Transporte/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Espaço Intracelular/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/genética
18.
Front Immunol ; 10: 2181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572389

RESUMO

Brucella abortus, the causative agent of brucellosis, displays many resources to evade T cell responses conducive to persist inside the host. Our laboratory has previously showed that infection of human monocytes with B. abortus down-modulates the IFN-γ-induced MHC-II expression. Brucella outer membrane lipoproteins are structural components involved in this phenomenon. Moreover, IL-6 is the soluble factor that mediated MHC-II down-regulation. Yet, the MHC-II down-regulation exerted by lipoproteins was less marked than the one observed as consequence of infection. This led us to postulate that there should be other components associated with viable bacteria that may act together with lipoproteins in order to diminish MHC-II. Our group has recently demonstrated that B. abortus RNA (PAMP related to pathogens' viability or vita-PAMP) is involved in MHC-I down-regulation. Therefore, in this study we investigated if B. abortus RNA could be contributing to the down-regulation of MHC-II. This PAMP significantly down-modulated the IFN-γ-induced MHC-II surface expression on THP-1 cells as well as in primary human monocytes and murine bone marrow macrophages. The expression of other molecules up-regulated by IFN-γ (such as co-stimulatory molecules) was stimulated on monocytes treated with B. abortus RNA. This result shows that this PAMP does not alter all IFN-γ-induced molecules globally. We also showed that other bacterial and parasitic RNAs caused MHC-II surface expression down-modulation indicating that this phenomenon is not restricted to B. abortus. Moreover, completely degraded RNA was also able to reproduce the phenomenon. MHC-II down-regulation on monocytes treated with RNA and L-Omp19 (a prototypical lipoprotein of B. abortus) was more pronounced than in monocytes stimulated with both components separately. We also demonstrated that B. abortus RNA along with its lipoproteins decrease MHC-II surface expression predominantly by a mechanism of inhibition of MHC-II expression. Regarding the signaling pathway, we demonstrated that IL-6 is a soluble factor implicated in B. abortus RNA and lipoproteins-triggered MHC-II surface down-regulation. Finally, CD4+ T cells functionality was affected as macrophages treated with these components showed lower antigen presentation capacity. Therefore, B. abortus RNA and lipoproteins are two PAMPs that contribute to MHC-II down-regulation on monocytes/macrophages diminishing CD4+ T cell responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos/imunologia , Monócitos/imunologia , RNA Bacteriano/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/genética , Brucella abortus/imunologia , Brucella abortus/fisiologia , Brucelose/imunologia , Brucelose/microbiologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Regulação para Baixo/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , RNA Bacteriano/genética , Células THP-1
19.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451617

RESUMO

To date, the implications of interleukin 6 (IL-6) for immune responses in the context of Brucella infection are still unknown. In the present study, we found that Brucella abortus infection induced marked production of IL-6 in mice that was important for sufficient differentiation of CD8+ T cells, a key factor in Brucella clearance. Blocking IL-6 signaling also significantly induced serum IL-4 and IL-10, together with a decreased gamma interferon (IFN-γ) level, suggesting that IL-6 is essential for priming the T-helper (Th) 1 cell immune response during Brucella infection. The IL-6 pathway also activated the bactericidal activity of primary and cultured macrophages. Bacterial killing was markedly abrogated when IL-6 signaling was suppressed, and this phenomenon was mainly associated with decreased activity of lysosome-mediated killing. Interestingly, suppressor of cytokine signaling 3 (SOCS3) was important for regulating the IL-6-dependent anti-Brucella activity through the JAK/STAT pathway. During early infection, in the absence of SOCS3, IL-6 exhibited anti-inflammatory effects and lysosome-mediated killing inhibition; however, the increase in SOCS3 successfully shifted functional IL-6 toward proinflammatory brucellacidal activity in the late stage. Our data clearly indicate that IL-6 contributes to host resistance against B. abortus infection by controlling brucellacidal activity in macrophages and priming cellular immune responses.


Assuntos
Brucella abortus/fisiologia , Citocinas/metabolismo , Interleucina-6/metabolismo , Macrófagos/microbiologia , Animais , Anticorpos , Células Apresentadoras de Antígenos , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Citocinas/genética , Interleucina-6/genética , Camundongos , Células RAW 264.7 , Interferência de RNA , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Células Th1/metabolismo
20.
Vet Ital ; 55(2): 149-155, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31274176

RESUMO

One of the major constraints in the diagnosis of animal brucellosis is the cross-reactivity that occurs between Brucella and Yersinia surface antigens. With the aim to find a method to distinguish Brucella from Yersinia infection, the expansion of interferon gamma producing (IFN-γ+) T cell subsets obtained from peripheral blood mononuclear cells (PBMC) isolated from cattle either infected by Brucella abortus or experimentally immunized with Yersinia enterocolitica O:9 were compared. The lymphocytes were analyzed by flow cytometry after PBMC were in vitro re-exposed to Yersinia or Brucella antigens. The results highlighted a statistically significant difference in the expansion of the CD4+ and CD8+ IFN-γ+ T cells occurring when PBMC of animals immunized with Yersinia are in vitro exposed to Y. enterocolitica O:9 antigen but not to Brucella antigen. This method could thus be suggested in those cases where results obtained by serodiagnosis need to be further clarified.


Assuntos
Brucella abortus/fisiologia , Brucelose Bovina/imunologia , Interferon gama/imunologia , Yersiniose/imunologia , Yersinia enterocolitica/fisiologia , Animais , Bovinos , Citometria de Fluxo/veterinária , Leucócitos Mononucleares/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...